Agenda - Coffee, Cookies and Mingling - Welcome and Introductions - Presentation and Q&A - Project Overview - Thurston County Geology - Classification Table and Inventory Map - Q&A - Break Out and Review Materials ## Project Overview ## Background - Most counties in WA designate mineral lands based on approved mining projects - Growth Management Act (GMA) statutes and rules indicate all mineral lands of longterm commercial significance should be identified, classified, designated and conserved comprehensively in advance, not site-by-site - Snohomish County currently does this - With this project, Thurston County is also leading the way - Thurston County mineral lands designations have been previously appealed and revised to comply with Growth Management Hearings Board (GMHB) decisions. This project builds on that foundation. #### Project Purpose - Identify, classify and designate mineral resource lands of long-term commercial significance in Thurston County - Ensure the County's policies and regulations are effective and consistent with the GMA - Inform the 2018 Comprehensive Plan update #### Phases of Work - Inventory and Classification (Dec 2016 May 2017) - Identify, classify and map all lands in Thurston County containing mineral resources such as sand and gravel and bedrock deposits, based on available geotechnical information - Designation (April 2017 June 2017) - Review Comprehensive Plan policies on designation process and criteria and recommend updates - Screen the inventory against designation criteria that take into account land use and environmental considerations - Regulations (June 2017) - Recommend regulatory updates for consistency with Comprehensive Plan policies #### Community Engagement - April June 2017 - Stakeholder group meeting(s) - Property owner comment period May 1-24 - Open house May 17 - Informational briefings at meetings of Planning Commission and Board of County Commissioners - July 2017 Spring/Summer 2018 - Public engagement for Comprehensive Plan Update - Final decisions made when Update is completed ## Thurston County Geology ## Geologic Setting of Resources - Three resource geo-settings: - (1) Glacial Outwash—Vashon Recession - (2) Glacial outwash Vashon Advance - (3) Volcanic Bedrock - Example (right) braided river deposits # Geologic Mapping of Thurston County - Brief Geology Overview—Aggregate and Rock! - Volcanic bedrock formations noted - VASHON CONTINENTAL GLACIATION # Aggregate Resource and Continental Glaciation (18-10ka) ## North-South Cartoon Cross Section - Bedrock old volcanic uplands. Note the volcanic flow beds and the general scale. - Vashon Advance outwash deposited during ice advance and under the till. - Vashon Recessional outwash (our Qgo friend) deposited during ice recessional and IS THE MAIN RESOURCE. Qgo is typically thin! Bennett Consulting, PLLC Engineering and Mining Geology Weinman Consulting, LLC # Quaternary Glacial Outwash (unit Qgo) Bennett Consulting, PLLC Engineering and Mining Geology Weinman Consulting, LLC # DRAINAGE CHANNEL Braided River Deposits in Outwash Plains OUTWASH PLAIN ## Classification Table #### **Major Sources of Information for the Thurston County Mineral Resource Lands Study** | Major Sources of Information for the Thurston County Whierar Resource Lands Study | | | | | |---|---|--|--|--| | Data Source | Notes | | | | | Thurston County (TC) geologic map compilation | TC GIS geologic map compilation and metadata derived from DGER information | | | | | TC subsurface data compilation | TC subsurface data (improved from USGS and other datasets) | | | | | TC active mine dataset | | | | | | LidAR imagery | Used to update geologic mapping of resource areas particularly where only 1:100,00-scale geologic mapping exists. Covers all of TC | | | | | Washington State Department of Natural Resource | | | | | | Division of Geology and Earth Resources (DGER) 24k | | | | | | and 100k geologic mapping of TC | | | | | | DGER subsurface database | Large dataset with wells, borings and geotechnical studies (some with sieve data). Information covers much of TC and includes DOE water well reports, geotechnical reports and other information | | | | | DGER mine database | Active and inactive permitted mine database including reclamation plans | | | | | DGER Shelton quadrangle resource study | Covers the northwest corner of TC | | | | | DGER Pierce and Lewis County Resource studies | Adjacent resource studies consulted | | | | | Washington State Department of Transportation (DOT) active and inactive mine database | DOT mine information including reclamation plans, cross sections, drilling logs, | | | | | DOT subsurface database | Database of borings along major highways | | | | | DOT aggregate and rock quality database | Aggregate and bedrock quality data (sieve, LA abrasion tests, etc) | | | | | United State Geologic Survey (USGS) topographic | 7.5-minute topographic maps of the TC with mine with pit, mine and quarry | | | | | maps | location information | | | | | USGS geohydrology study of Thurston County of Droost and others (1998, 1999) | Variety of surface and subsurface information including subsurface data, cross sections, etc covers most of the county | | | | | USGS geohydrology geology and geohydrology study of | Variety of surface and subsurface information including subsurface data, cross | | | | | Thurston County of Walters and Kimmel (1966) | sections, etc covers most of the county | | | | | Associated Earth Science Inc. (AESI) project information | Provides additional surface and subsurface site specific information including resource quality and quantity information at various site across the county including sediment sieve analysis at several sites | | | | | Miscellaneous Geologic Publications | Examples include Lea (1984) and Globerman (1981) TC thesis studies | | | | | Sand and Gravel
(Aggregate) | | Resource Strata decreasing resource quality | | | Non-
Resource | |---------------------------------------|----------------------|---|--|--|--| | | | Quality Type A ¹ | Quality Type B ² | Quality Type C ³ | Quality Type D ⁴ | | sing resource thickness and vo | | <5 percent fines⁵ 70:30 to 30:70 sand and gravel ratio >25 years' life expectancy Minimum 240,000 yd³/acre >100 feet thick Minimum overburden | Up to 15 percent fines⁵ 70:30 to 30:70 sand and gravel ratio >25 years' life expectancy Minimum 240,000 yd³/acre >100 feet thick Minimum overburden | Up to 25percent fines⁵ 70:30 to 30:70 sand and gravel ratio >25 years' life expectancy Minimum 240,000 yd³/acre >100 feet thick Minimum overburden | Generally unsuitable for extraction >25 percent fines ⁵ , may have high organic content Out of 70:30 to 30:70 sand and gravel range No life expectancy <15,000 yd³/acre Limited depth | | | Quantity
Type 2 | <5 percent fines 70:30 to 30:70 sand and gravel ratio 10 to 25 years' life expectancy Average 80,000 to 240,000 yd³/acre 50 to 100 feet thick Overburden <15 feet thick | Up to 15 percent fines 70:30 to 30:70 sand and gravel ratio 10 to 25 years' life expectancy Average 80,000 to 240,000 yd³/acre 50 to 100 feet thick Overburden <15 feet thick | Up to 25 percent fines 70:30 to 30:70 sand and gravel ratio 10 to 25 years' life expectancy Average 80,000 to 240,000 yd³/acre 50 to 100 feet thick Overburden <15 feet thick | | | | Quantity
Type 3 | <5 percent fines 70:30 to 30:70 sand and gravel ratio Life expectancy variable, generally <10 years Average 15,000 to 80,000 yd³/acre Thickness varies, typically <50 feet | Up to 15 percent fines 70:30 to 30:70 sand and gravel ratio Life expectancy variable, generally <10 years Average 15,000 to •80,000 yd³/acre Thickness varies, typically <50 feet | Up to 25 percent fines 70:30 to 30:70 sand and gravel ratio Life expectancy variable, generally <10 years Average 15,000 to 80,000 yd³/ acre Thickness varies, typically <50 feet | | | Quarry Rock ⁶
(Bedrock) | | Quality Type A | Quality Type B ¹³ | Quality Type C ⁷ | Quality Type D ⁸ | | reasing interbedded reso | Type 1 ¹⁰ | Formation generally well mapped and (or) high percentage of formation contains resource strata of type A Meets or exceeds WSDOT specs for all rock products Minimal amount of fractures⁹ Minimal percent waste rock 20 percent or more rockery- size material produced | Formation mostly divided locally and contains a high percentage of resource strata of type B Meets WSDOT specs for some rock products Fractures vary from minor to very prevalent⁹ Up to 10 percent waste rock 20 percent or less rockery-size material produced¹⁰ | Formation mostly divided locally and contains a high percentage of resource strata of type C Rock will not meet WSDOT specs Highly fractured⁹ 10 to 30 percent waste rock Minimal rockery-size material produced¹⁰ | unsuitable for extraction ⁸ • >30 percent waste rock • Highly to very highly fractured ⁹ and (or) weathered and (or) poorly lithified | | | Type 2 ¹¹ | None | • Formation undivided ¹² and >50% of formation contains mostly resource strata of type B as defined for Type 1 bedrock | Formation undivided¹² and >50% of
formation contains mostly resource strata of
type C as defined for Type 1 bedrock | No rockery-
size material
produced | | | Type 3 ¹¹ | | Formation undivided¹² and <50% formation
contains mostly resource strata of type B as
defined for Type 1 | • Formation undivided ¹² and <50% of formation contains mostly resource strata of type C as defined for Type 1 | | #### Resource Classification System ## Inventory Map ## Quadrangles #### **Example Quads** Tumwater and Lacey #### Legend - Green = Sand & Gravel - Brown = Bedrock - White = Non-County Land - Grey = Other Land - Red Outlines = Existing designated mineral lands and mining activities AFSI project location DNR active mine AFSI project location DNR active mine USGS 7.5' topo series designated p LACEY Thurston County, WA Bennett Consulting, PLLC Engineering and Mining Geology Weinman Consulting, LLC